1, 9-SUBSTITUTED FLUORENES

III. Synthesis and Transformations of 3-Chloropyridazino-[4,5,6-m,1]Fluorene*

N. S. Dokunikhin and S. A. Mikhalenko

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 1, No. 4, pp. 598-603, 1965

Syntheses of 3-chloropyridazino[4, 5, 6-m, 1]fluorene and its 9-methyl and 9-chloro derivatives are described. Products in which a chlorine atom of these compounds is exchanged with NH₃, $C_6H_5NH_2$, NH₂ · NH₂, H₂O, $C_6H_5NHNH_2$, CH₃ONa, and compounds containing an active methylene group are prepared. Treatment of 3-hydrazinopyridazino[4, 5, 6-m, 1]fluorene and 3-hydrazino-9-methylpyridazino[4, 5, 6-m, 1]fluorene with alcoholic alkali and HgO give respectively pyridazino[4, 5, 6-m, 1]fluorene and 9-methylpyridazino[4, 5, 6-m, 1]fluorene, while 3-phenylhydrazinopyridazino[4, 5, 6-m, 1]fluorene is oxidized under the same conditions to 3-phenylazopyridazino[4, 5, 6-m, 1]fluorene.

In a Letter to the Editor [1], 3-chloropyridazino[4, 5, 6-m, 1]fluorene (3-chloroindeno[1, 2, 3-d, e]phthalazine) (1), was mentioned as the starting material for the synthesis of 3-hydrazinopyridazino[4, 5, 6-m, 1]fluorene (VII). The conditions of preparation, properties, and other transformations of the compound, which are of interest on account of its reactivity, were not described.

The readily accessible 2, 3H-pyridazino[4, 5, 6-m, 1]fluoren-3-one [3] and fluorene ring substituted derivatives [3] when heated with phosphorus oxychloride give I, 3-chloro-9-methylpyridazino[4, 5, 6-m, 1]fluorene (Ia), and 3, 9-dichloropyridazino[4, 5, 6-m, 1]fluorene (Ic). The chlorine atoms of those compounds are readily exchanged for other substituents. Reaction of I with ammonia gives 3-aminopyridazino[4, 5, 6-m, 1]fluorene (II), with aniline gives 3-phenylaminopyridazino[4, 5, 6-m, 1]fluorene (III), and with sodium methoxide gives 3-methoxypyridazino[4, 5, 6-m, 1]fluorene (IV).

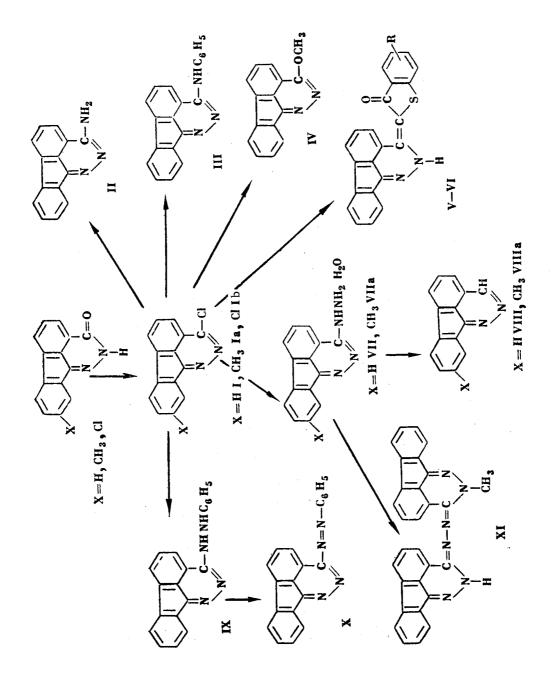
Condensation with compounds containing active methylene groups, e.g., substituted 3-hydroxythionaphthenes, gives dyes V, VI, identical with those prepared from 2, 3H-pyridazino[4, 5, 6-m1]fluorene-3-thione [2].

Reaction of I, and Ia with hydrazine hydrate gives the hydrates of 3-hydrazinopyridazino[4, 5, 6-m, 1]fluorene (VII) and 3-hydrazino-9-methylpyridazino[4, 5, 6-m, 1]fluorene (VIIa), which when oxidized with mercuric oxide in alcoholic alkali give pyridazino[4, 5, 6-m, 1]fluorene (VIII) and 9-methylpyridazino[4, 5, 6-m, 1]fluorene (VIIIa) [1].

Unlike these, the product of reaction of I with phenylhydrazine, which is 3-phenylhydrazinopyridazino[4, 5, 6-m, 1]fluorene (IX) when similarly oxidized gives 3-phenylazopyridazino[4, 5, 6-m, 1]fluorene (X).

Reaction of the hydrazine-substituted derivative VII with 2-methyl-2, 3H-pyridazino[4, 5, 6-m, 1]fluorene-3-methylthionium methylsulfate gives a diazacyanine dye XI.

Experimental


3-Chloropyridazino[4, 5, 6-m, 1]fluorene (I). 1. 2 g (5.5 mmole) 2, 3H-pyridazino[4, 5, 6-m, 1]fluoren-3-one [2] and 10 ml POCl₃ were refluxed together for 3 hr, 6.5 ml distilled off, the residue cooled, poured on to ice, neutralized with 10% aqueous sodium carbonate solution, filtered, and the solid washed with ice water and dried in a vacuum. Yield of I, 1. 24 g (95.3%) mp 182-189°. Yellow prisms from benzene mp 186.6-188.4°, soluble in benzene, chlorobenzene, sparingly soluble in ether, λ_{max} (1g ε) (benzene): 280 (4.52), 315 (3.81), 355 m μ (3.72). Found: N 11.45, 11.53; Cl 14.55, 14.27%. Calculated for C₁₄H₇ClN₂: N 11.74; Cl 14.86%.

Similarly 3. 6 g (15.5 mmole) 9-methyl-2, 3H-pyridazino[4, 5, 6-m, 1]fluoren-3-one [3] gave 3. 61 g (98.3%) Ia. After chromatographing on Al_2O_3 and recrystallizing from benzene, yellow needle-shaped prisms mp 202. 2-203. 0°, λ_{max} (lg ϵ) (benzene): 290 (4.58), 315 (3.90), 360 m μ (3.69). Found: N 10.92, 10.78; Cl 14.30, 14.59%. Calculated for $C_{15}H_9CIN_2$: N 11.09; Cl 14.03%.

4. 6 g (18 mmole) 9-chloro-2, 3H-pyridazino[4, 5, 6-m, 1]fluoren-3-one [3] gave 0. 51 g (10. 6%) Ib. After chromatographing on Al₂O₃ and crystallizing from benzene, yellow needle-shaped prisms mp 272. 8-273. 7° . λ_{max} (lg ϵ) (benzene): 280, 285, 290 (4. 63), 315 (3. 89), 355 m μ (3. 65). Found: N 10. 29, 10. 23; Cl 25. 35, 15. 20%. Calculated for C₁₄H₆Cl₂N₂: N 10. 25; Cl 26. 00%.

3-Aminopyridazino[4, 5, 6-m, 1]fluorene (II). 2 g (8.5 mmole) I was heated with 40 ml liquid ammonia in an autoclave at 180-190° for 20 hr. After cooling the products were dissolved in 12% hydrochloric acid, and the free amine

^{*}For Part II see [1].

liberated by rendering alkaline with aqueous ammonia. Yield 1.02 g (55%) II. Recrystallization from ethyl acetate gave pale yellow needle-shaped prisms mp 248.5-249.5° (decomp.) or 348.5-351° (decomp.); sparingly soluble in benzene, ethers, rather more soluble in acetic and hydrochloric acids. Found: C 76.94, 76.71; H 4.51, 4.44; N 19.41, 19.23%. Calculated for $C_{14}H_9N_3$: C 76.69; H 4.13; N 19.17%. λ_{max} (lg ε) (benzene): 305 (4.10), 360, 365 m μ (3.95). The diacetyl derivative of II had an mp 171-171.5° (decomp.). Found: C 71.31, 71.32; H 4.38, 4.45; N 14.20, 14.20%. Calculated for $C_{18}H_{18}N_3O_2$: C 71.26; H 4.32; N 13.89%.

3-Phenylaminopyridazino[4, 5, 6-m, 1]fluorene (III). 0. 24 g (1 mmole) I was refluxed for 1 hr 30 min with 6 ml aniline. The reaction products were cooled, poured into dilute HCl, the mixture made alkaline, and excess aniline steam-distilled off. The residue was filtered off, washed with water, and dried. Yield 0. 27 g (91%) III. From benzenemethanol it formed flat yellow prisms, mp 244, 9-245. 1°. λ_{max} (lg ϵ) (benzene): 280 (4.53), 315 (3.76), 380, 385, 390 m μ (4.03). Found: C 81.18, 81.05; H 4.37, 4.58; N 14.16, 14.16%. Calculated for C₂₀H₁₃N₃: C 81.33; H 4.44; N 14.23%

3-Methoxypyridazino[4, 5, 6-m, 1]fluorene (IV) was prepared by the method described for 3-methoxy-6-methylpyridazine [4]. 0. 48 g (2 mmole) I was added to a solution of 1.3 g Na in 40 ml methanol, and the mixture refluxed for 5 hr. The precipitate obtained on cooling was filtered off, washed with a small amount of water, and dried. Yield 0. 47 g (100%) IV mp 204. 7-206. 0°. From toluene it formed colorless long prisms mp 206. 5-208. 1°, soluble in benzene, somewhat less soluble in chlorobenzene, toluene, hot alcohol, CHCl₃, ether. λ_{max} (lg ε) (benzene): 290 (4. 50), 355 m μ (3. 71). Found: C 76. 68, 76. 82; H 4. 41, 4. 28; N 11. 91, 11. 68%. Calculated for C₁₅H₁₀N₂O: C 76. 90; H 4. 30; N 11. 96%.

Picrate of IV mp 152-153.5°. Found: N 14.85, 15.50%. Calculated for C₁₅H₁₀N₂O · (NO₂)₃C₆H₂OH: N 15.12%.

3-(6-Chloro-3-hydroxythionaphthenylidene)-2, 3H-pyridazino[4, 5, 6-m, 1]fluorene (V). 0. 47 g (0. 002 mole) I, and 0. 37 g (0. 002 mole) 6-chloro-3-hydroxythionaphthene were refluxed together in 20 ml trichlorobenzene until evolution of HCl ceased (28 hr). After cooling, the precipitate was filtered off, washed with methanol, and dried. Yield of dye V 0. 48 g (63. 0%), red needle-shaped prisms mp 332-335° (decomp.). λ_{max} (lg ε) (H₂SO₄): 420, 426 (4.55), 495, 500, 505, 510 m μ (4.49). The dye prepared by reacting 2, 3H-pyridazino[4, 5, 6-m, 1]fluorene-3-thione with 6-chloro-3-hydroxythionaphthene [2] (332-333. 5°) gave mixed mp 332-334. 5°.

3-(4,5-Benzo-3-hydroxythionaphthenylidene)2, 3H-pyridazino-(4,5,6-m,1] fluorene (VI). 0. 47 g (0. 002 mole) I and 0. 4 g (0. 002 mole) 4,5-benzo-3-hydroxythionaphthene were refluxed together in 20 ml trichlorobenzene until evolution of HCl ceased. The dye was isolated as described above. Yield of VI 0. 66 g (83. 4%). From trichlorobenzene it separated as red prisms mp 320-324° (decomp.). λ_{max} (lg ε) (H₂SO₄): 470, 475, 480, 485 m μ (4. 43). The dye prepared by reacting 2, 3H-pyridazino[4, 5, 6-m, 1]fluorene-3-thione with 4, 5-benzo-3-hydroxythionaphthene [2] gave an undepressed mixed mp with it.

3-Hydrazinopyridazino[4,5,6-m,1]fluorene hydrate (VII). 0. 48 g (2 mmole) I and 20 ml hydrazine hydrate were refluxed together for 15 hr. The red precipitate which came down on cooling was filtered off, washed with water, and dried. Yield 0. 43 g (85%) VII mp 255. 5-256° (decomp.). Red needle-shaped prisms, soluble in hot chlorobenzene, CHCl₃, benzene, less soluble in alcohol. λ_{max} (lg ε) (benzene): 360, 365, 370 m μ (3.74). Found: C 66.73, 66.57; H 4.37, 4.39; N 22.14, 22.10%. Calculated for C₁₄H₁₀N₄H₂O: C 66.65; H 4.79; N 22.21%.

Similarly 1.5 g compound Ia gave 1.41 g (90%) VIIa. Crystallized from toluene it formed orange needle-shaped prisms mp 277.5-278° (decomp.); moderately soluble in benzene, toluene, alcohol. λ_{max} (lg ϵ) (benzene): 315 (3.73), 330 (3.65), 360, 365, 370, 375 m μ (3.76). Found: N 21.06, 21.02%. Calculated for $C_{15}H_{12}N_4 \cdot H_2O$: N 21.04%.

Pyridazino[4, 5, 6-m, 1]fluorene (VIII).

- 1) 0.5 g (0.002 mole) VII was agitated with 50 ml ethanol, 1 g NaOH, and 0.44 g (0.002 mole) HgO for 1 hr. The whole was then diluted with water, filtered, the filter washed with water, and the filtrate extracted with benzene. The benzene extract was washed with water, dried over CaCl₂, and excess benzene distilled off till the residue amounted to 20-30 ml. This benzene solution was then chromatographed over Al₂O₃, using benzene as the eluant, and the yellow, middle layer collected. After removing excess solvent there was obtained 0.32 g (80%) VIII. From white spirit the product separated as yellowish prisms mp 123.1-125°; soluble in ethyl acetate, benzene, acetone, alcohols, dichloroethane, and in hot petroleum ether, insoluble in light petroleum ether. λ_{max} (lg ε) (benzene): 310 (5.59), 355 (5.55), 280, 285 m μ (6.43). Found: C 82.86, 82.27; H 4.14, 4.04; N 13.45, 13.56%. Calculated for C₁₄H₈N₂: C 82.34; H 3.95; N 13.72%.
- 2) Under similar conditions, 0.25 g VII, without HgO, gave 0.11 g (55%) VIII. Mixed mp with the substance prepared by method 1) undepressed.

VIII picrate, mp 221-222 (decomp.). Found: C 56.19, 55.88; H 2.50, 2.83; N 15.90, 15.70%. Calculated for $C_{14}H_8N_2 \cdot (NO_2)_3C_6H_2OH$: C 55.43; H 2.56; N 16.16%.

VIII methiodide, mp $254-257^{\circ}$ (decomp.). Found: N 8.08, 8.38; I 36.65, 36.50%. Calculated for $C_{15}H_{11}IN_2$: N 8.09; I 36.67%.

9-Methylpyridazino[4,5,6-m,1]fluorene (VIIIa). 0.37 g (1.4 mmole) VIIa was agitated with 50 ml ethanol, 1 g NaOH, and 0.44 (2 mmole) HgO for 5 hr. The product was isolated as described above. Yield 0.16 g (53%) VIIIa mp 140-143.5°. Cryatallized from white spirit it forms slightly yellowish flat prisms, mp 145.4-146.3°. λ_{max} (lg ε) (benzene): 280, 285 (4.63); 310 (3.73), 355 m μ (3.61). Found: C 82.84, 82.76; H 4.57, 4.50; N 12.65, 12.30%. Calculated for $C_{15}H_{10}N_2$: C 82.54; H 4.62; N 12.84%.

VIIIa methiodide, mp 260.5-262° (decomp.). Found: N 8.32, 8.28%. Calculated for C₁₆H₁₃IN₂: N 7.78%.

- 3-Phenylhydrazinopyridazino[4, 5, 6-m, 1]fluorene (IX). 0.65 g (2.7 mmole) I and 15 ml phenylhydrazine were heated together at $145-150^{\circ}$ for 15 hr. After cooling, the products were filtered, and the precipitate washed with ethanol. Yield of IX 0.4 g (47.6%). It crystallized from benzene-ethanol as red needle-shaped prisms, mp 199.2-202.0°; soluble in ethanol and benzene. λ_{max} (lg ε) (benzene): 380 m μ (3.92). Found: C 77.58, 77.81; H 4.31, 4.60; N 18.04, 17.89%. Calculated for $C_{20}H_{14}N_4$: C 77.40; H 4.54; N 18.06%.
- 3-Phenylazopyridazino[4, 5, 6-m, 1]fluorene (X). 0.1 g (0.3 mmole) IX was agitated with 50 ml ethanol, 4 ml 25% aqueous ammonia, and 0.16 g (0.7 mmole) HgO until the solution was decolorized, after which the latter was filtered, the filter washed with a small amount of ethanol, and the filtrate evaporated to dryness under reduced pressure. Yield of X 0.1 g (100%). It crystallized from ethanol as elongated orange prisms, mp 188. 2-189. 0°, soluble in hot benzene and alcohol, λ_{max} (lg ε) (benzene): 330, 335 (3.88), 365, 370 m μ (3.89). Found: C 77.66, 77.85; H 3.93, 3.91; N 18.34, 18.30%. Calculated for C₂₀H₁₂N₄: C 77.90; H 3.92; N 18.17%.

Bis(2, 3H-pyridazino[4, 5, 6-m, 1]fluorene)-2-methyl-3, 3'-azine (XI). 0.25 g (1 mmole) VII, 0.37 g (1 mmole) 2-methyl-2, 3H-pyridazino[4, 5, 6-m, 1]fluorene-3-methylthionium methyl sulfate, 0.19 g (1 mmole) triethylamine, and 45 ml absolute alcohol were refluxed together for 3 hr. After cooling, the products were filtered, and the filter washed with methanol. Yield 0.43 g (95.5%) XI mp 202-203° (decomp.). It crystallized from benzene as reddish-brown crystals with a violet reflex mp 208.5-209.5° (decomp.); moderately soluble in benzene and chlorobenzene, insoluble in alcohhol and water. λ_{max} (lg ϵ) (m-xylene): 495, 500, 505 m μ (4.11). Found: N 18.23, 18.33%. Calculated for C₂₉H₁₈N₆: N 18.66%.

REFERENCES

- 1. N. S. Dokunikhin and S. A. Mikhalenko, ZhOKh, 34, 2473, 1964.
- 2. N. S. Dokunikhin and S. A. Mikhalenko, ZhOKh, 33, 1974, 1963.
- 3. N. S. Dokunikhin and S. A. Mikhalenko, Author's Certificate 164604, Byull. izobr., no. 16, 1964; ZhOrKh, 1, 5, 944, 1965.
 - 4. W. G. Overend, L. M. Turton, and L. F. Wiggins, J. Chem. Soc., 3500, 1950.

18 April 1964

Scientific Research Institute for Organic Intermediates and Dyes, Moscow